The Accuracy of Solutions to Triangular

نویسنده

  • NICHOLAS J. HIGHAM
چکیده

Triangular systems play a fundamental role in matrix computations. It has been prominently stated in the literature, but is perhaps not widely appreciated, that solutions to triangular systems are usually computed to high accuracy--higher than the traditional condition numbers for linear systems suggest. This phenomenon is investigated by use of condition numbers appropriate to the componentwise backward error analysis of triangular systems. Results of Wilkinson are unified and extended. Among the conclusions are that the conditioning of a triangular system depends on the right-hand side as well as the coefficient matrix; that use of pivoting in LU, QR, and Cholesky factorisations can greatly improve the conditioning of a resulting triangular system; and that a triangular matrix may be much more or less ill-conditioned than its transpose. Key words, triangular matrix, triangular system, substitution algorithm, forward error analysis, backward error analysis, condition number, comparison matrix, M-matrix, pivoting AMS(MOS) subject classifications, primary 65F05, 65G05 CR subject classification. G.1.3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique

Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...

متن کامل

New DKFT Elements for the Finite Element Analysis of Thin Viscoelastic Plates

  In this paper, finite element analysis of thin viscoelastic plates is performed by proposing new plate elements using complex Fourier shape functions. New discrete Kirchhoff Fourier Theory (DKFT) plate elements are constructed by the enrichment of quadratic function fields in a six-noded triangular plate element with complex Fourier radial basis functions. In order to illustrate the validity...

متن کامل

An interval-valued programming approach to matrix games with payoffs of triangular intuitionistic fuzzy numbers

The purpose of this paper is to develop a methodology for solving a new type of matrix games in which payoffs are expressed with triangular intuitionistic fuzzy numbers (TIFNs). In this methodology, the concept of solutions for matrix games with payoffs of TIFNs is introduced. A pair of auxiliary intuitionistic fuzzy programming models for players are established to determine optimal strategies...

متن کامل

On the structural properties for the cross product of fuzzy numbers with applications

In the fuzzy arithmetic, the definitions of addition and multiplication of fuzzy numbers are based on Zadeh’s extension principle. From theoretical and practical points of view, this multiplication of fuzzy numbers owns several unnatural properties. Recently, to avoid this shortcoming, a new multiplicative operation of product type is introduced, the so-called cross-product of fuzzy numbers. Th...

متن کامل

Clustering of Fuzzy Data Sets Based on Particle Swarm Optimization With Fuzzy Cluster Centers

In current study, a particle swarm clustering method is suggested for clustering triangular fuzzy data. This clustering method can find fuzzy cluster centers in the proposed method, where fuzzy cluster centers contain more points from the corresponding cluster, the higher clustering accuracy. Also, triangular fuzzy numbers are utilized to demonstrate uncertain data. To compare triangular fuzzy ...

متن کامل

Application of triangular functions for solving the vasicek model

This paper introduces a numerical method for solving the vasicek model by using a stochastic operational matrix based on the triangular functions (TFs) in combination with the collocation method. The method is stated by using conversion the vasicek model to a stochastic nonlinear system of $2m+2$ equations and $2m+2$ unknowns. Finally, the error analysis and some numerical examples are provided...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1989